Strong Interminivalley Scattering in Twisted Bilayer Graphene Revealed by High-Temperature Magneto-Oscillations

نویسندگان

چکیده

Twisted bilayer graphene (TBG) provides an example of a system in which the interplay interlayer interactions and superlattice structure impacts electron transport variety non-trivial ways gives rise to plethora interesting effects. Understanding mechanisms scattering TBG has, however, proven challenging, raising many questions about origins resistivity this system. Here we show that exhibits high-temperature magnetooscillations originating from charge carriers between minivalleys. The amplitude these oscillations reveals interminivalley is strong, its characteristic time scale comparable intraminivalley counterpart. Furthermore, by exploring temperature dependence oscillations, estimate electron-electron collision rate find it exceeds monolayer graphene. Our study demonstrates consequences relatively small size Brillouin zone Fermi velocity reduction on lateral TBG.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phonons in twisted bilayer graphene

Alexandr I. Cocemasov,1 Denis L. Nika,1,2,* and Alexander A. Balandin2,3,† 1E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, Chisinau, MD-2009, Republic of Moldova 2Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California ...

متن کامل

High-temperature superfluidity in double-bilayer graphene.

Exciton bound states in solids between electrons and holes are predicted to form a superfluid at high temperatures. We show that by employing atomically thin crystals such as a pair of adjacent bilayer graphene sheets, equilibrium superfluidity of electron-hole pairs should be achievable for the first time. The transition temperatures are well above liquid helium temperatures. Because the sampl...

متن کامل

Superlensing with twisted bilayer graphene

The charge susceptibility of twisted bilayer graphene is investigated in the Dirac cone, respectively, randomphase approximation. For small enough twist angles θ ≲ 2° , we find genuine interband plasmons, i.e., collective excitonic modes that exist in the undoped material with an almost constant energy dispersion. In this regime, the loss function can be described as a Fano resonance, and we ar...

متن کامل

Electromechanical oscillations in bilayer graphene

Nanoelectromechanical systems constitute a class of devices lying at the interface between fundamental research and technological applications. Realizing nanoelectromechanical devices based on novel materials such as graphene allows studying their mechanical and electromechanical characteristics at the nanoscale and addressing fundamental questions such as electron-phonon interaction and bandga...

متن کامل

Quantum Hall effect in twisted bilayer graphene.

We address the quantum Hall behavior in twisted bilayer graphene transferred from the C face of SiC. The measured Hall conductivity exhibits the same plateau values as for a commensurate Bernal bilayer. This implies that the eightfold degeneracy of the zero energy mode is topologically protected despite rotational disorder as recently predicted. In addition, an anomaly appears. The densities at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2021

ISSN: ['1079-7114', '0031-9007', '1092-0145']

DOI: https://doi.org/10.1103/physrevlett.127.056802